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R CONTROL FOR THE STABILIZATION OF ANY STRICTLY

: PROPER MINIMUM PHASE LINEAR SYSTEMS WITH RELATIVE

I DEGREE NOT EXCEEDING TWO AND DIMENSION NOT EXCEEDING n D I " :
Ny A. S. Morse ELECTE
-.- l

. Department of Electrical Engineering

- Yale University m 3 l “
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INTRODUCTION D
In a recent paper {1] it was shown that there are smooth, nonlinear, three-
. dimensional controllers, not incorporating probing signals, which are capable of
E adaptively stabilizing any single-input, single-output, minimum phase, relative
degree two or less linear system of any dimension. Controllers of this type are
based on minimal dynamic compensator synthesis [2]. While such controllers are
simple in structure they do not have a model-following capability.

In this paper we develop a new algorithm based on observer theory [2], which can
adaptively stabilize and achieve model-following as well, The controller, which
is a smooth nonlinear dynamical system of dimension 4(n+1), can adaptively sta-
bilize any physical process with scalar input u and scalar output y , provided
the process can be modelled by a strictly-proper, minimum phase, linear system of
dimension not exceeding n and relative degree not exceeding two. The controller
is based on concepts developed previously in [1] and [3]. l

1. CONTROL EQUATIONS

The controller to be examined consists of a two-dimensional reference system

y_+ Ay
E 1’r (1)
= 1
p + xzp T
where A, and A, are positive constants and r(+) is a bounded, differentiable
reference inpug a tracking error
€=y -Yo (2)
sensitivity function n-vectors Bu and ey generated by the equations - ;
éu = Aeu + bu o
. (3
6 = A0 + by
y y _
where n is a prespecified positive integer and (A,b) is any n-dimensional control- :*;:ﬂ
lable pair with A stable, and a control law
= ' '
u = N(||k|])Cle + kyey tkp+kr) (4)
where ku.ky,k and kr are control parameters,
a (W '
k [ku'ky'kp'kr] , (5)

]

, and N(*) is a Nussbaum Gain, i.e. any integrable function satisfying

Jlkll= (k')
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- ¢ R
- inf {- I uN(u)du} = == el
‘-‘ £>0 0 :-"‘. 5_{-
" e Me N1
g {e.8es N(u) = u2 cos (u2) . Control parameters ku,k ok and k_ are adjusted )-.' -_L
i according to the rules y * r .
" k =6e+z z =0 e~ (A8 + bu)e
. u u u u l'u u A
k =6e+z z = X6 e - (A6 + by)e e
y y y y 1y y 1€)) BN
: kp = pe + zp zp = Alpe - (r ~ Azp)e :_,;‘j
> . S
k =re+ 2z z2 = A.re = re e
o r r r 1 o
y The controller defined by (1)- (7) may be viewed as a smooth 4(n+l)-dimensional :f S
- dynamical system with inputs r, r and y, state {y 2050 .ey,z .zy,z 22, } and output 5f
: 4 R
i Remarks: -

-0 1. By using minimal dimensional observer theory, it is possible to reduce the
- dimensions of Bu and ey to (n-1) and to eliminate one control parameter thereby

obtaining a (4n+l)-dimensional algorithm with the same capabilities as the one
described here [2], The stability amalysis of the lower-dimensional algorithm
is essentially the same as the analysis which follows.

l.;- -.-'.. -

2, There are two different ways to avoid generating the derivative of the refer- ,\}\i

ence signal r required by the above algorithm, The first is simply to intro- -::ui:
duce a new reference signal r and then make r _a state of a three-dimension- o8

.
T ¥

al reference system defined by (1) and r+ Aar = t where A3 > 0. The second

,

is to make use of an idea due to Monopoli [4,5] which amounts to replacing (4) Ih -

and (7) by A
(km aN(iIkil) .
u = N(JIx JDk'® + ( - + N({lk]])¢e'e)e .
and . .

k = ge 0 2

~s‘rj)2Lc',TE0 tv____

respectively where / BB

6= [3:1.9;,-911']' (8) R

and 5 + A2¢ = g8, This alternative, however, requires N(-) ‘to be differentiable.)f \ i:;;

A S

2, MAIN RESULT i g L
0

The process to which the precedinﬁ algorithm is applicable must admit a minimum d
phase, linear model of dimension i £ n and relative degree s 2. It is known {6]
that these assumptions imply that such a process can also be modelled by a n-

dimensional, stabilizable, minimum phase, relative degree two or one linear system B
of the form e

xp = (A + hpc)xp + bpu bility Codes

gil and/or
Special

(9)
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: where ¢ 18 any row vector chosen so that (c,A) is observable, and kp and b_ are -

l unknown constant, parameter vectors. We take (9) as the model of the process to %3:*;1
be controlled. Our main result is as follows. e

- -‘.-:"‘i

Theorem 1: For each initial state and each differentiable input r, bounded on iﬁ:ﬁ}:

; [0,«), the state response X = (xp,eu,ey.p.yr.zu.zy.zp,z } of the closed-loop system :*';ﬁ

N r -

" defined by (1)-(9) exists and is bounded on [0,=) and the tracking error e + 0 as

. €+ =,

- The remainder of this paper 1is devoted to a proof of this theorenm.

v 3. STABILITY ANALYSIS

- To prove Theorem 1, it proves useful to work with a certain system of equations

' which we now derive. For this let n* denote the relative degree of (9) and

5 define
6=y + Ay (10)
It i8 known [6] that for n* = 1,
- - 1 - ]
§ = gu du Ou dyey + ¢ (11)

where g 18 a nonzero constant - the "high-frequency gain" - du and dy are unknown
parameter vectors, and ¢ 1is an unknown linear combination of decaying exponentials.
Similarly, for n* = 2 ir is known that

H - _ At - at
§ + k26 gu duau dyey + ¢ (12)

where g, du'dy and ¢ have the same interpretations as for n* = 1, It 1is also

known [6] in either case that if x = [6;.6;.x;]'. then x satisfies
= - Aw by - J - '
X = Ax + b(gu dueu dyey + €) (13)

where A is stable,

To proceed, define N

o= e+ Ale (14)
and note from (1), (2) and (10) that ¢ = § - p, It follows from (1), (11) and (12)
that

- - ' - ' -
og=gu-4d's d'e +¢e-~-p
if n® = 1 and

o+ Ao=gu-4d'6 -d'8 +¢-1
2 uu yy

if n* = 2, Thus if we define d = [d',d',1,0]' for n* = 1 or d = [4',d',0,1]" for
n* = 2, then uy uy

o =gu-d'8 + ¢ if n* = ] (15)
and .
g+ 2,0 = gu- d's + ¢ if n* = 2 (16) o
LA
where 6 was defined previously in (8). If in addition we define q = [1,0]' for RS
n* « 1 orq= [0,1]' for n* = 2, then for n* = 1 or 2 (13) becomes N RN
D)
= - - : 08 2%
x = Ax + b(gu - d'0 + ¢ + {p,rlq) aan o
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:: Thus with the notation

I us=gu-d'e+e,

- (15) through (17) can be rewritten as

N g=u 1f o* = 1 sy’

I o+ Ao =4 1f nt = 2 (16)*

X = Ax + b(u + [p,r]"q) an'

By differentiating the expressions for k“.ky,kp and kr in (7) and substituting in
the expressions for Eu.éy.ép,ér also in (7), it is straightforward to verify that

l ku = 6,0, ky = eyu. kp = pg and kr = rog, ¢ being gilven by (14). Using (5) and

: (8) we can thus write

- k = 60 (18)

For ease of reference we now summarize in one place, the system of equations to be
. analyzed,

R e+ \e=o (19a)
\_'_Z‘j o=u if n* = 1 (19b)
2 G40 = 1f % = 2 (19¢)
‘_ u = gN(J| k|]Dk'6e - d'6 + € (194)
k = 60 (19¢)
‘p %= K+ B + [ovr]'9) (19£)
o+ Ap =T N (19g)
6 = [e;,e;,p.r]' \ (19h)
x = [6',8',x']" ' (191)

u 'y p

The preceeding pefines a dynamical system of the form 7= F(Z,r,c) where
Z = [e,0,k,X,p] (with o deleted from Z if n* = 1), Observe that boundedness of Z

implies boundedness of e,c.k,eu,ey,xp and p. Boundedness of p together with (1)

implies boundedness of Y, In addition, boundedness of e,k,ey,e »p and r together
with (5) and (7) imply boundedness of zu.zy,zp and L Thus to prove Theorem 1

it is enough to show that Z(t) exists and is bounded on [0,») and that e(t) + 0 as
£+ o,

Differentiability of F 1implies that for any initial state Z(0), there must exist
an interval I = (O,tl) on which a solution Z(t) exists. For any function E(t)

defined on I, we write { ¢ LQ(I) if 9&.=/€'£ ¢is bound d on 1 by a constant not
depending on t, ; we also write £ ¢ L°(I) if J l'C(T)II dr € L (I).
1]
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We can now state

l Proposition 1: There exist constants Cl and Cz, not depending on tl' such that for
tel
3 _ Ay ft,
_ oj o(v)u(r)dr £ gﬂ(Ilk(t)l') W oJ a(r)dr + Cll|k(t)“ +C, (20)
"
. where
i £
l n(g) = J uN(u)dp (21)
0
_f Proof: Set n -”k “2; hence from (19e), n = 2k'60. It follows from this, (19d)
s and (19e) that
g ou = & N(nDA - Q"% + oe (22)
I We can now develop bounds for the integrals of the terms on the right side of (22).
First note thal:t n(e)
8/2 J N(n (1)) A(0)dt = g/2 f N(n%dn '

- 0 n(0)
‘ "k il
v - wN(w)d
: 8 v (23)
N PO |
N Next observetthac - gn(llk(t)ll) - gn(}jx @ |P
i -I d'k(t)dt = d'k(0) -~ d'k(t)

< "dllllk(t)l|+ [d"k(0) | (24)

For any positive constant C, o ¢ gCo” + € /4C. Thus

. t t, t,
I j o{t)e(r)dr s C j a“(1)dT + %C J e (1)dr . (25)
0 0 0
By setting C = A2/(1+A2), C1 -"d" and
c, = [gn(llk(O)ll)[ + |d'k(0)] + ke f 2(0)dr,
0

(23)=-(25) can be combined to yield (20), V

t
< Proof of Theorem l: From (19b) and (19c) it follows that I o(t)u(t)dr equals
t 2 t.2 2 2 0
J o (1)dt if n* = 1 or Az o {1)dt + R{(o“(t) - 07(0)) 1t n* = 2, This and
- Pgoposition 1 thus 1imply thgt
. 1 2
- PR X =
. (1.’_)‘1) 0o (1)dr if n 1
g n(||k(:)||) P (26)
2 A2 ¢ 2
1 [ 2 g (t)
—— o (t)dt + =— if n* = 2
_:— (14’)1) 0 2
- where

R(E) = gn(E) + Cf + C, + 6%(0)/2

In view of (6) and the definition of =(f) in (21) it is easy to see that there must
exist a closed-bounded interval [a,b] containing “k(O)" for which both &(a) and




2 vl i te B0 SR SOV AR A SN g RS A AP BN PN A L AR Y
AL - v e e AR

2(b) are negative. Since (26) implies that for any tel, ﬂ('lk(t)ll) 2 O,'lk(t)"
cannot pass through either a or b. Therefore lklle L (I). In addition, since
2(£) is continuous, it follows from (26) that'c ¢ L°(I) for n* = 1 and

o ¢ L2QfIL™(D) for n* = 2. Thus o € L2(I) for n* = 1,2 so by (19a)
ec Lz(I]\Lm(I) for n* = 1,2,

For n* = 1, u =g ¢ LZ(I); since [p,r]' € LN(I) it follows from (19f) that
x e L°(D.
For n* = 2, U=0+ A\

20 and g € L“(I); again 1t follows from (19f) that
x e (D).

At this point we have shown that Z = [e,0,k,x,p]' € L (I) for n* = 2, that

Z = [e,k,x,p]" € LQ(I) for n* = 1 and that e ¢ L2[I] fgr n* = 1,2, Therefore we
can take tl = », Thus Z 1s bounded on [0,») and e ¢ L"[0,»). In addition, since

(19) implies that ec Lw(O,“), it follows that e * 0 as t + =, ¥ ﬂ;:-.

CONCLUDING REMARKS

y The algorithm presented here and its subsequent stability analysis rely for the b
most part on ideas developed previously in [1], [3] and [6]). In fact the stability ]
analysis given 1s almost identical to that used in [l]. The essential new idea in C
this paper is to use a control law (4) incorporating both reference model state p '
and reference input r. It is this departure from more traditional adaptive control
laws, (e.g. [3]) which makes model following possible with one algorithm for
processes of both relative degree 1l and 2.
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